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A problem of the bending of a plate for a doubly connected
domain with a partially unknown boundary�
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Abstract

The problem of the bending of an isotropic elastic plate, bounded by two rectangles with vertices lying on the same half-line,
drawn from the common centre, is considered. The vertices of the inner rectangle are cut by convex smooth arcs (we will call the
set of these arcs the unknown part of the boundary). It is assumed that normal bending moments act on each rectilinear section
of the boundary contours in such a way that the angle of rotation of the midsurface of the plate is a piecewise-constant function.
The unknown part of the boundary is free from external forces. The problem consists of determining the bending of the midsurface
of the plate and the analytic form of the unknown part of the boundary when the tangential normal moment acting on it takes a
constant value, while the shearing force and the normal bending moments and torques are equal to zero. The problem is solved by
the methods of the theory of boundary-value problems of analytical functions.
© 2007 Elsevier Ltd. All rights reserved.

Similar problems of the bending of a plate and of the plane theory of elasticity were investigated previously for
an infinite plate, weakened by apertures with unknown equal strength contours,1–5 and for a finite doubly connected
region with a partially unknown boundary.6,7 Unlike those problems, here we consider the case when the required
contour consists of separate smooth arcs.

1. Formulation of the problem

We will denote by S the region occupied by the midsurface of the plate, and by L
(k)
0 = AkAk+1(k = 1, . . . , 4 A5 ≡

A1), L(j)
1 = B2j−1B2j(j = 1, . . . , 4) and L

(m)
2 (m = 1, . . . , 4) sections and smooth arcs of the outer and inner bound-

aries of the region S respectively, and we will assume that

We will also assume that the sections L
(2k−1)
j (j = 0, 1; k = 1, 2) are parallel to the ordinate axis, while the sections

L
(2k)
j (j = 0, 1; k = 1, 2) are parallel to the abscissa axis (Fig. 1), and we will choose as the positive direction on the

boundary L = L0 ∪ L1 ∪ L2 that which leaves the region S on the left.
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Fig. 1.

We will assume that normal bending moments act on each rectilinear section of the boundary contours and hence
that the angles of rotation of the midsurface of the plate take piecewise-constant values, while the unknown part of the
boundary is free from external forces.

We will consider the following problem: it is required to obtain the bending of the midsurface of the plate and the
analytical form of the unknown part of the boundary such that the tangential normal moment Ms(t) acting on it takes
a constant value (k0), while the shearing force, the normal bending moments and torques are equal to zero.

2. Solution of the problem

According to the approximate theory of the bending of a plate,8–12 the sag W(x, y) of the midsurface of the plate in
the case considered satisfies the biharmonic equation

(2.1)

and the boundary conditions

(2.2)

where d(t) = dk = tg �k (�k are the angles of rotation), t ∈ L
(k)
0 ∪ L

(k)
1 , N(t) is the shearing force, and Mn(t) and Mns(t)

are the normal bending moments and torques respectively. Note that the boundary conditions on the contour L2
are “overdetermined” (in the classical formulations of the problem we have two conditions on the free part of the
boundary: Mn(t) = 0, N(t) + ∂Mns/∂s = 0), but in the case of an equal strength contour, characterized by the condition
Ms(t) = k0 = const, t ∈ L2, as will be seen below, the condition N(t) = 0 is satisfied automatically, and, hence, on the
contour L2 two conditions remain

Problem (2.1), (2.2) is solved using a scheme similar to that described in Ref. 13.
We will assume that the set of all the external forces applied along the contour L1 are statically equivalent to zero.

In this case, the problem reduces to finding two functions �(z) and �(z), holomorphic in the region S, with boundary
conditions on the contour L

(2.3)

(2.4)

(2.5)

(2.6)



32 G.A. Kapanadze / Journal of Applied Mathematics and Mechanics 71 (2007) 30–39

where

�(t) and �(t) are the angles between the x axis and the outward normals of the contours L0 and L1 at the point
t ∈ L0 ∪ L1, c

(k)
j are arbitrary real constants, and E(t) = Ek, t ∈ L

(k)
2 (j = 0, 1; k = 1, . . . , 4) are arbitrary (generally

speaking, complex) constants (D0 is the cylindrical stiffness of the plate and � is Poisson’s ratio).
We will require the function �(z) to be continuous in the closed region S + L, while the functions �′(z) and �(z) are

required to be continuously extendable on the boundary of the region S everywhere with the possible exception of the
points Ak and Bk, in the neighbourhood of which they satisfy the condition

(2.7)

Suppose the function z = 	(
) conformally maps the circular ring D(1 < |
| < R) onto the region S. We will assume
that the circle (l0(|
|) = R) is mapped on to the contour L0, while the circle (l00(|
| = 1) is mapped on to the contour
L1 ∪ L2. We will denote by ak(k = 1, . . ., 4) and bk(k = 1, . . ., 8) the originals of the points Ak and Bk, and by l1 and l2
the parts of the circle l00, corresponding to the lines L1 and L2, and we will assume that

where l
(k)
j are arcs of the circle l0 and l00, corresponding to the contours L

(k)
j . Adding equalities (2.3) and (2.4) and then

differentiating with respect to s, taking equality (2.6) into account, we obtain a mixed-type Dirichlet boundary-value
problem with respect to the function �(
) = �′[	(
)] − p for the circular ring D

(2.8)

By virtue of conditions (2.7) it can be proved that problem (2.8) only has a trivial solution and, consequently, we
have

(2.9)

(we will assume that the arbitrary constant of integration is equal to zero). We conclude from the second formula
that N(z) = 0, z ∈ S + L, and hence the condition N(t) = 0, t ∈ L is satisfied automatically. On the basis of relations
(2.4), (2.5) and (2.9) with respect to the functions 	(
) and �0(
) = �[	(
)], holomorphic in the ring D, we obtain the
boundary-value problem

(2.10)

(to simplify the notation, the piecewise-constant functions �[	(�)], . . . are again denoted by �(�), . . .; we will act in
the same way in what follows with respect to the piecewise-constant functions and we will define them over the whole
plane by the equalities �(r�) = �(�), . . ., 0 < r < ∞.

It is easily seen that on the contours l0 and l1 we have the equalities

(2.11)

where
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(Ak and B2k−1 are affixes of the points Ak and B2k−1). Consider the function

(2.12)

From boundary conditions (2.10) and (2.11) we obtain a boundary-value problem of the theory of analytic functions
of a mixed type in the functions W(
) for a circular ring D* (R−1 < |
| < R), cut along the arc of the circle l00:

(2.13)

(2.14)

where

g(�) and g±(�) are functions, expressions for which can easily be written out (this will be done below in final form),
and l∗0 is the transform of the circle l0 for the mapping 
1 = 
/R2.

Consider the piecewise-holomorphic functions

They satisfy the condition

(2.15)

while the function W(
) is defined in terms of them by the formula

(2.16)

Substituting expressions (2.16) into Eq. (2.14), we obtain the following boundary-value problems for the functions
�1(
) and �2(
)

(2.17)

for j = 1 and j = 2 respectively, where h
(k)
j (t)(j, k = 1, 2) are functions, expressions for which can easily be written

down.
We will seek solutions of problems (2.17) of the class h(b1, . . ., b8) (regarding this class see Ref. 8). The indices of

these problems of the given class are equal to −2, while the solutions, which satisfy condition (2.15), have the form

(2.18)

where
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(the functions hj(t) are expressed in terms of the function h
(k)
j (t)(j, k = 1, 2), and 	j(
) are arbitrary functions,

holomorphic in the ring D*, which satisfy the condition 	j(
) = 	j*(
), (j = 1, 2).

It follows from the condition for the function W(
) to be bounded in the ring D* that, among the constants c
(k)
1

and Ek (k = 1, . . ., 4), four remain arbitrary (we will assume that these are the constants c
(k)
1 ), while the remaining

ones are expressed in terms of these. By virtue of relations (2.16) and (2.18), we obtain from the conditions (2.13) a
Riemann-Hilbert boundary-value problem in the functions 	j(
) (j = 1, 2) for the circular ring D*

(2.19)

where

and g
(k)
j (t) are certain functions which satisfy the condition

If we take into account the fact that the indices of the functions Gj(t) (j = 1, 2) both on the contour l0 and on the
contour l∗0 are equal to zero, these functions can be represented in the form

(2.20)

where Hj(
) (j = 1, 2) is the solution of the Dirichlet problem for the ring D*, i.e.

(2.21)

The necessary and sufficient conditions for problem (2.21) to be solvable have the form

(2.22)

while the solutions themselves can be represented in the form

(2.23)

where

The functions Hj(
) (j = 1, 2) satisfy the condition Hj(
) = Hj*(
), 
 ∈ D*.
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We will now consider boundary-value problems of a mixed type for the ring D*

(2.24)

We will seek solutions of problems (2.24) of the class h(a1, . . ., a4) (the indices of these problems of the given class
are equal to −4). The necessary and sufficient condition for problem (2.24) to be solvable has the form

(2.25)

while the solutions themselves have the form

(2.26)

where

The functions �j(
) (j = 1, 2) satisfy the condition �j(
) = �j*(
). On the basis of these results, boundary conditions
(2.19) can be written in the form

(2.27)

where

(2.28)

The functions �j(t) satisfy the condition

The necessary and sufficient conditions for problem (2.27) to be solvable have the form

(2.29)

while the solutions themselves are represented by the formula

(2.30)

where kj(j = 1, 2) are real arbitrary constants.
The functions �j(
) (j = 1, 2) satisfy the condition �j(
) = �j*(
).
We can conclude on the basis of formula (2.28) that the functions �j(
) have the form

(2.31)
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Hence, the functions �j(
) (j = 1, 2) can be represented in the form

(2.32)

We can conclude on the basis of this formula that the functions �1(
) and �2(
) have poles of the first order
respectively at the points 
 = ±1, ±R, ±1/R and 
 = ±i, ±iR, ±i/R. In order for these functions to be holomorphic in
the ring D*, the following conditions must be satisfied

(2.33)

(2.34)

Conditions (2.22), (2.25) and (2.29) must be connected with these conditions, and hence we obtain 17 conditions for
the parameters bj (j = 1, . . ., 8), ak (k = 1, . . ., 4), k0 and R and for the constants c

(k)
0 , c

(k)
1 (k = 1, . . . , 4), k1, k2.

Substituting the quantities (2.32) into Eq. (2.16), we obtain the function W(
), after which, from formula (2.12), we
obtain both the conformally mapped function (and thus the analytical form of the unknown part of the boundary)

and the function

which, together with the function �(z), determines the bending of the midsurface of the plate (Goursat’s formula).
Despite the fact that the equation of the required contour is represented in analytical form, there are considerable

mathematical difficulties in determining the form of this contour in practice. This is due, primarily, to the fact that
we have 17 conditions for selecting the 24 unknown parameters (even when there is cylindrical symmetry we have
2 conditions for 5 of the parameters). We will therefore consider a special case when there is no contour L1, and the
contour L0 is a square, on each side of which the same principal normal bending moment M0 acts (i.e. we will seek an
equal strength contour (of an aperture) inside the square).

We will denote by S0 the quarter of the surface of the plate situated in the first quadrant, and by A0
k (k = 1, . . . , 5)

the vertices of its boundary L(0), where A0
5 A0

1 is part of the required contour (this part is shown hatched in Fig. 2).
Taking into account the results obtained above, we can conclude that N(t) = 0, t ∈ L(0), and hence the problem for

the whole plate and its part S0 are equivalent from the mathematical point of view.
Suppose the function z = 	0(
) conformally maps the unit semicircle D0(|
 < 1, lm 
 > 0) into the region S0 and let

us use the fact that a0
1 = 1, a0

3 = i, a0
5 = −1 (a0

k (k = 1, . . . , 5)) are the originals of the points Ak
0), i.e. the required part

of the boundary L(0) is transferred into the section [−1,1].
Proceeding in the same way as above with respect to the functions

(2.35)

Fig. 2.
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(E is an arbitrary (generally speaking, complex) constant), we obtain a Riemann-Hilbert boundary-value problem
for the unit circle D(|
| < 1), which, in turn, by the method of conformal joining (where the joining function is the
Zhukovskii function 
 = 
 + 1/
) can be reduced to a boundary-value problem of linear conjugation for the plane cut
along the section [−2,2] of the real axis

(2.36)

where

and Hj (j = 1, 2) are certain real constants. We will seek solutions of the problem of class h(−2, −
, 0, 
, 2).
The necessary and sufficient condition for a problem of this class to be solvable has the form8

(2.37)

while the solution itself is given by the formula

(2.38)

The integrals in formulae (2.37) and (2.38) are elliptic integrals of the first and third kind.
In the first approximation with respect to the parameter k = √

2 − 
/2, from formula (2.37) we obtain

(a is the length of the side of the square).
In the same way we obtain from formula (2.38)

and from formula (2.35) the equation of the required contour will have the form

(2.39)

We similarly obtain

We will carry out some analysis of the results obtained.
We will denote the abscissae of the points A0

1, and A (A is the middle of the coutour A0
5 A0

1) by x1 and x*. We will
have from formula (2.39)
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Fig. 3.

Fig. 4.

Hence we conclude that

(in the last case the aperture has a shape similar to a hypocycloid (Fig. 2). We also obtain that x1 → 0, x∗ →
√

2
16 a

as k0 → 9 M0
4a

, 
 → 0 (Fig. 3), and when k0 → 108 M0

(54−2
√

3)a
, 
 = 2

√
3

3 the coordinate x1 reaches its maximum, where

x1 max = a
25/233/4 , x∗ =

√
3

2 x1 max (Fig. 4).
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